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Graph Foundation Model
Application

( [ Knowledge Graph Completion' ]

[ Graph Question Answering']

Graph Anomaly Detection *

Algorithm Reasoning

In Context Learning

[ Drug Discovery ]

Molecule Graphs

Transportation system

K Recommendation *

[ Towards Foundation Models For Knowledge Graph Reasoning

[ Making large language models perform better in knowledge graph completion

f [ Zero-shot Logical Query Reasoning on any Knowledge Graph

[ GRAPHLLM: BOOSTING GRAPH REASONING ABILITY OF LARGE LANGUAGE MODEL

< [ Can Language Models Solve Graph Problems in Natural Language?

[ GraphWiz: An Instruction-Following Language Model for Graph Problems

\ [ Let Your Graph Do the Talking: Encoding Structured Data for LLMs

— [ AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

[ A Generalist Neural Algorithmic Learner

[ PRODIGY: Enabling In-context Learning Over Graphs

)

)

[ Enhancing Activity Prediction Models in Drug Discovery with the Ability to Understand Human Language]

[ A molecular multimodal foundation model associating molecule graphs with natural language

[ A systematic survey of chemical pre-trained models
[ Diet-ODIN: A Novel Framework for Opioid Misuse Detection with Interpretable Dietary Patterns

[ Can Large Language Models Empower Molecular Property Prediction?

[ Building transportation foundation model via generative graph transformer

[ GraphPro: Graph Pretraining and Prompt Learning for Recommendation
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Dynamic Graph

Definition:
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Dynamic Graph Anomaly Detection
Definition:
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Dynamic Graph Anomaly Detection

A Dynamic Graph Anomaly Detection|r]:
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic
Graphs using Large Language Models

@ Outline

Shuo Liu Di Yao’ Lanting Fang
Institute of Computing Technology, Institute of Computing Technology, Beijing Institute of Technology
Chinese Academy of Sciences Chinese Academy of Sciences

yaodi@ict.ac.cn

Zhetao Li Wenbin Li Kaiyu Feng
Jinan University Institute of Computing Technology, Beijing Institute of Technology
Chinese Academy of Sciences

Xiaowen Ji Jingping Bi’
Southeast University Institute of Computing Technology,
Chinese Academy of Sciences
bjp@ict.ac.cn
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,

(@) Examples:

Positive Examples: Negative Examples:
Example 1:<Edge> Example 1:<Edge>
Label: Normal Label: Anomalous
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2.1. AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

@ Method

AnomalyL.LM ¥ = A~ X 4242 He 28 7%, :

» 1) Dynamic-aware Contrastive Pretraining

> 2) Reprogramming-based Modality Alignment

> 3) In-Context Learning for Few-Shot Detecion

| edges e

@

"y
S PPy S !
[ P AT R I | I |
 Reprogramming-based Modality Alignment o i |
: are 1|
‘ Text Prototype Repromgramming Prompt Template Parameters

Input

ij

Subgraph-based Edge Encoder

a7
; . Ne NN Si Edge
ransformer <7 Encoding
i

Subgraph level loss
Leon (Sa,8p,8p)
Edge level loss

t
Lpce(riy ;)

Pre-trained word embeddings

t i 1
lr £, [fext prototypes)

[ Multi-Head Attention

+
Reprogr'amed
embeddings

Reprogramed

embeddings *
—_—

[Role Definition]

[Task Description]
[Question]

Pre-trained
LLM (Body)

hidden layer

output
—h"

AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,

output
embeddings

h]CL

Pre-trained LLM

(Body)

T anCL

* Text Prototype
Repromgramming

T

[ $Dynamic—aware Encoder]

t t

Prompt Template
[Rale Definition]
[Task Description]
[Examples]
[Question]

Positive Negative New
Examples: Examples: edge:
positive negative
1 & new
e . €
positive negative
€n €n
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@ Method

1) Dynamic-awate Contrastive Pretraining
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24
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A;g 2.1. AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

Dynamic-aware Contrastive Pretraining
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' Dynamic-aware Contrastive Pretraining

Subgraph level loss
s : 2
(‘ Dynamic-aware Encoder Leon (SaiSp,Sp)

| - N Edge level loss
i Input St

; P . »|| S-T Subgraph | “iJ

. edges €; Construction

Subgraph-based Edge Encoder

N, s]
Transformer GNN ,
s/

t
LBCE (r ?JJ,-; f‘i))

Edge
Encoding

AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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ASCI

—

Dynamic-aware Contrastive Pretraining
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Subgraph—-based Edge Encoder : gt—1
~ ot \ . T [ .
i Input S-T Subgraph Sij Ne_ Si Edge i o “ For node negative{*’
EEdQES e;r}- [Construction Transformer » GNN T Encoding E.“P'\. v} *
oS0 dn e, 53
®anchor/ | o « 4
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............................ Y SR / Gt
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A;g 2.1. AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

Dynamic-aware Contrastive Pretraining
Q3: JefTsfidfeF B #AT R TR
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A;g 2.1. AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models

Dynamic-aware Contrastive Pretraining
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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@ Method

2) Reprogtamming-based Modality Alignment g? %IieGng?é :
27 5 Gra {
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“Reprogramning-based Modality Alignnent T Lo | MOonaLLLH Znstruction
; Share ; T
‘ Text Prototype Repromgrammlng Prompt Template Parameters i @Role Definition: )
Pre-trained word embeddings E?ole Definition] As an AI few-shot learning approach
ask Description] —
Wy [question] (@) Task Description:
E----Eaa;_;---s: l The description of the anomaly type
\embeddings) w’
lr fj ‘Text Prototypes Reprogramed g hidden layer ! @) Question:
A embeddings Pre-traine output Classifv new ed ee
—’ |
v — LLM (Body) — & mp | y gecij-
[ Multi-Head Attention | | Example:<Edge>
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L embeddings ™M ) V'Cuna 7B'V1 .5 !
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AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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@ Method

3) In-Context Learning for Few-Shot Detection

B T AnomalyL.LM /& 7 9] % it
FF E R A7
XAE 8, FHELSFZRNZ

EJ{::I\) o 4&532?-1\, }J\JIi

(1) Role Definition:
As an AI few-shot learning approach

A

@) Task Description:
The description of the anomaly type

]

(3 Examples:

Positive Examples: Negative Examples:

Example 1:<Edge>
Label: Normal

Example 1:<Edge>
Label: Anomalous

@ Question:

Based on the pattern in the examples
provided, classify new edge.

New Example :<Edge>

Label:?

KA H 1 é& B SLAE T R B R = A A
A FH AR ST RBMFA K TAHAMEALT

hre™eV kA B TR Fw L 6g KA,

In-Context Learning for Few-Shot Detectlon

output

embeddings hycy,

Pre-trained LLM

(Body)
A
T n&fCL
* Text Prototype
Repromgramming
[ *Dynamic—aware Encoder]

Positive Negative New

Prompt Template
o Examples: Examples: edge:
[Role Definition] positive _negative

[Task Description] = 1
[Examples]
[Question]

new
e

positive negative
n en

AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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@ Experiment

LI ARANESSEEIEE ERHITNK, EAZFRARGFFTER, b =F V4%
AFw W 7 ke rEde . B, AR ASA SR R B AR B A9 S F3E £ L3t AT X
SR EAGEND LS E 09 R Ao B TR AR B B 89 3 T AR

Table 1: Performance comparison results of few-shot anomaly detection on multiple anomaly types. Table 4: Performance on Real-World Labeled Dataset
1-shot 5-shot 10-shot Dataset Method 1-shot  5-shot  10-shot
Dataset Model
CDA LPL HHL CDA LPL HHL CDA LPL HHL AddGraph 0.6126  0.6149  0.6277
StrGNN 0.5891  0.5756  0.5974 | 0.6018 0.6041 0.6122 | 0.6222  0.6329  0.6402 T-Finance TGN 0.6646  0.6701  0.6865
AddGraph | 0.5994 0.6023 0.5988 | 0.6097 0.6033 0.6104 | 0.6216 0.6238  0.6172 GDN 0.6672  0.6689  0.6898
SAD 0.6724 0.6754  0.6876

Deep Walk 0.6102 0.6073 0.6202 | 0.6113 0.6122 0.6196 | 0.6155 0.6176  0.6154
AnomalyLLM | 0.8018 0.8056 0.8087

BlogCataLog TGN 0.6732 0.6699 0.6919 | 0.7112 0.7023 0.7118 | 0.7263 0.7387 0.7311 AddGraph 36116 06365 06331
GDN 0.6733  0.6795 0.6609 | 0.6997 0.7051 0.7121 | 0.7321 0.7311 0.7319 _ TGN 0.6706  0.6754  0.6887
SAD 0.6841 0.6792 0.6411 | 0.7002 0.7018 0.6988 | 0.7342 0.7216 0.7265 T-Social GDN 06694 06782 06908
TADDY 0.6892 0.6983 0.6891 0.7148 0.7186 0.7177 0.7258 0.7326 0.7334 SAD 0.6779 0.6746  0.6805
AnomalyLLM | 0.8288 0.8334 0.8255 | 0.8331 0.8319 0.8407 | 0.8402 0.8456 0.8447 AnomalyLLM | 0.8101 0.8187 0.8206
StrGNN 0.6143 0.5956 0.5722 | 0.6113 0.7132 0.6512 | 0.6442 0.6724 0.6249

AddGraph 0.5842  0.5466  0.5647 | 0.6018 0.6667 0.6321 | 0.4642 0.5728 0.7001
Deep Walk 0.6198 0.6187 0.6142 | 0.6256 0.6263 0.6176 | 0.6255 0.6209 0.6197

Mi(sjsge TGN 0.6521 0.6535 0.6643 | 0.7098 0.7193  0.7155 | 0.7335 0.7365 0.7324
GDN 0.6577 0.6818 0.6611 | 0.7201 0.7289 0.7255 | 0.7493 0.7511 0.7546

SAD 0.6703  0.6587 0.6693 | 0.7102 0.7146  0.7194 | 0.7416  0.7453  0.7406

TADDY 0.6992  0.7078 0.6132 | 0.7204 0.7237 0.7218 | 0.7255 0.7278 0.7243

AnomalyLLM | 0.8414 0.8358 0.8368 | 0.8446 0.8459 0.8424 | 0.8488 0.8546 0.8442 vicuna-7B-v1.5

20
AnomalyLLM: Few-shot Anomaly Edge Detection for Dynamic Graphs using Large Language Models, arxiv’24,
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Graph Question Answering

Background:
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Article: Endangered Species Act

Paragraph: ... Other legislation followed, including
the Migratory Bird Conservation Act of 1929, a 1937
treaty prohibiting the hunting of right and gray whales,
and the Bald Eagle Protection Act of 1940. These later
laws had a low cost to society—the species were rela-
tively rare—and little opposition was raised.”

Question 1: “Which laws faced significant opposition?”
Plausible Answer: later laws

apple

Question 2: “What was the name of the 1937 treaty?”
Plausible Answer: Bald Eagle Protection Act

/g._ﬂ‘\/ basket

(Takc the pies out to cool) (Open cabinet drawer)

m/

Begin puttmg

Fill pies onto
pies on plate plates evenly

[Serve the potpies on a platej

\

©
® 00—
oo

Determine if there is a path between
two nodes in the graph. Note that (i)
means that node i and node j are
connected with an undirected edge.
Graph: (0,1) (1,2) 34) (4.5)

Q Is there a path between node 1 and
node 47

r{ 2.Cycle
Q0 &
®

@@
In an undirected graph, (i) means that
node i and node j are connected with an
undirected edge
The nodes are numbered from 0to 5,
and the edges are: (34) (35) (1,0) (2,5)
(2,0
Q Is there a cycle in this graph?

4 3. i
©0—@®
O—0—3
In a directed graph with 5 nodes
numbered from 0 to 4:

node 0 should be visited before node

4.
Q Can all the nodes be visited? Give the
solution.

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 1 with
weight 2,

Q:Give the shortest path from node 0 to
node 4.

2 ®
In a directed graph, the nodes are
numbered from 0 to 3, and the edges

are:
an edge from node 1 to node 0 with

| 6. Bipartite Graph Matching

job sppicans
w O @ @ 9

There are 4 job applicants numbered
from 0to 3, and 5 jobs numbered from
0o 4. Each applicant is interested in
some of the jobs. Each job can only
accept one applicant and a job

In an undirected graph, (i) means that
node i and node j are connected with
an undirected edge.

The nodes are numbered from 0 to 4,

In an undirected graph, the nodes are

are connected with an undirected edge.

numbered from 0 to 4, and every node has an.
embedding. (ij) means that node i and node

capacity 10, applicant can be appointed for only one | | and the edges are: (4.2) (04) (4,3) (0,1) | | Embeddings: node 0: [1,1], -+
an edge from node 0 to node 2 with job. 02 @1)23) The edges are: (0,1)
. B = . capacity 6, Aoplicant 0is interested injob 4, . Q' Is there a path in this graph that In a simple graph convolution layer, each
belief state in theory-of-mind structured commonsense reasonin anedgeflom node 2 10 node 3wit | | PRS0 e R it every e sty onealTyes, | | node's embadang % updated by th sum of
capacity 4. applicants in such that the maximum give the path. Note that in a path, its neighbors’ embeddings.
Q What s the maximum flow from node | | ob et =7 SEd T hey | | adjacent nodes must be connected Q What's the embedding of each node after
1 to node 37 e lntatested int with edges one layer of simple graph convolution layer?
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Can Language Models Solve Graph Problems

in Natural Language?
@ Outline

Heng Wang* !, Shangbin Feng* 2, Tianxing He?, Zhaoxuan Tan?, Xiaochuang Han?, Yulia Tsvetkov?
1Xi’an Jiaotong University ?University of Washington 3University of Notre Dame
wh22132105540@stu.xjtu.edu.cn, shangbin@cs.washington.edu

> RIARE T AAMER B RET A E X E & 49BenchMark NLGraph);
> AE & #HAT L85 4o LIM performance, &% 7 —3HAE;
> VEEIE T AP LLM I fF B 20 2369 B E 5 ik

23
Can Language Models Solve Graph Problems in Natural Language?, NIPS’23,
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2.2. Can Language Models Solve Graph Problems in Natural Language?

@ BenchMark

> VEE 32 7 A K353 B (NLGraph) A 0 X, £ 5 ANF AT E I M, 5902 /4

ﬂ

e vy

1. Connectivity -

G
P
G 0O

Determine if there is a path between
two nodes in the graph. Note that (i j)
means that node i and node j are
connected with an undirected edge.
Graph: (0,1) (1,2) (34) (4,5)

Q: Is there a path between node 1 and
node 4?7

,—' 2. Cycle : -
O— @
(2

-G
In an undirected graph, (ij) means that
node i and node j are connected with an
undirected edge.
The nodes are numbered from O to 5,
and the edges are: (34) (3,5) (1,0) (2,5)
(2.0)
\Q: Is there a cycle in this graph?

AN

,—' 3. Topological Sort : -
(00—

In a directed graph with 5 nodes
numbered from 0 to 4:

node 0 should be visited before node

4, .

Q: Can all the nodes be visited? Give the
solution.

vy

,—| 4. Shortest Path : -
@ O

1 RO
jestlog
In an undirected graph, the nodes are
numbered from O to 4, and the edges are:
an edge between node 0 and node 1 with
weight 2, ...

Q: Give the shortest path from node 0 to
node 4.

.

5. Maxi Flow ~

In a directed graph, the nodes are
numbered from 0 to 3, and the edges
are:

an edge from node 1 to node 0 with
capacity 10,

an edge from node 0 to node 2 with
capacity 6,

an edge from node 2 to node 3 with
capacity 4.

Q: What is the maximum flow from node
1 to node 37

A

{6. Bipartite Graph Mau:hing)—

There are 4 job applicants numbered
from 0 to 3, and 5 jobs numbered from
0 to 4. Each applicant is interested in
some of the jobs. Each job can only
accept one applicant and a job
applicant can be appointed for only one
job.

Applicant 0 is interested in job 4, ...

Q: Find an assignment of jobs to
applicants in such that the maximum
number of applicants find the job they

|_are interested in.

,—' 7. Hamilton Path = ~
o

i 7

7

—G

In an undirected graph, (i,j) means that

node i and node j are connected with

an undirected edge.

The nodes are numbered from 0 to 4,

and the edges are: (4,2) (04) (4,3) (0,1)

(0,2) (4.1) (2,3)

Q: Is there a path in this graph that

visits every node exactly once? If yes,

give the path. Note that in a path,
adjacent nodes must be connected

In an undirected graph, the nodes are
numbered from 0 to 4, and every node has an
embedding. (ij) means that node i and node j
are connected with an undirected edge.
Embeddings: node 0: [1,1], -+

The edges are: (0,1) ...

In a simple graph convolution layer, each
node's embedding is updated by the sum of
its neighbors’ embeddings.

Q: What's the embedding of each node after

with edges.

one layer of simple graph convolution layer?
.

vy

v
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ASCI

@ Experiment

Fl: B bR B G R AESA R RSP A B AR 64 R
R H AL, EREGEREES T, LLM BT T S A 2RZ 693, &
T T EELRERSD .

Default LLM: TEXT-DAVINCI-003

Method Connectivity Cycle Shortest Path
Easy Medium Hard Avg. Easy Medium Hard Avg. Easy Hard Easy(PC) Hard (PC) Avg.
RANDOM 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 6.07 6.69 14.73 13.81 17.81
ZERO-SHOT  83.81 72.75 63.38 71.31 50.00 50.00 50.00 50.00 2940 21.00 46.00 26.76 30.79
FEW-SHOT  93.75 83.83 76.61 84.73 80.00 70.00 61.00 70.33 31.11 26.00 49.19 35.73 35.51
CoT 94.32 82.17 7721 84.57 84.67 63.33 53.25 66.75 63.89 29.50 76.84 35.79 51.51
0-CoT 79.55 65.83 68.53 71.30 55.33 57.67 49.00 54.00 8.89 7.50 62.39 43.95 32.03
CoT+SC 93.18 84.50 82.79 86.82 82.00 63.67 53.50 66.39 68.89 29.00 80.25 38.47 54.15
Subset | Connect. Cycle Topo. Sort  Shortest Path Max. Flow Bipartite Graph Hamilton Path GNNs
# EASY 3521730 150§ 300 180 360 180 | 360 150§ 300 300 4600 150 4300 100 /R00
SPEC. . S5-10 . 3-10 n: 5-10 n: 5-10 n: 5-10 n: 6-20 n: 5-10 n: 5-8
# MEDIUM Il,200 8,580 I 600 /1,800 § 150/ },350 / / / / /
SPEC. n: 11-25 n: 11-25 n: 11-25 / / / / /
# HARD -680/ 7,090 | 400/§2,000 | 200/ },200 200 /1,200 -200 1,200 210 /{1,260 200 4600 140 /B40
SPEC. n: 26-35 n: 26-35 Imrss ITrllfzo qlzo n: I}33 I n: 11-20 I n: Q—FLS

Can Language Models Solve Graph Problems in Natural Language?, NIPS’23,
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ASLCH

@ Experiment \ GNN Task

—

TID: LA G R SIS AL - LB R A g _Method  PCMH Acc( REQ)
e g . : T ZERO-SHOT  13.61 0.00 20.04
R 5% PromptieCoT, SC(self-consistency)fE B 4¥ 22 ] 24 FEW-SHOT  20.04 0.00 3783
EHSERBTAHE, LRALFOBEZRARL, HA CoT 64.55  31.00  14.34

‘ 0-CoT 13.85 0.00 44.55
PromptianOT, COT+SC, 7 HaLLTM(Least-to-most) 89 %4 R CoT+SC 63.92 28.00 13.28

1% T Few-SHOT,

20
,4 50.5 El easy 15.3 EE easy
12.0
36 1 37.8 9.3 10.0

zero -shot few-shot 0 CoT oT CoT+SC LT™M zero-shot few-shot 0-CoT CoT CoT+5C
18.4 10
/ EZ3 medium = hard
g10 ¥ S s 4.0
2.1 2.5 2.0 2.0

- - 1.0

1 I8 74 I 7 RN N~ T R N 0 I 74 B o7 B %
zero-shot few-shot 0-CoT CoT CoT+SC LTM zero-shot few-shot 0-CoT CoT CoT+SC

topological sort maximum flow

26
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—_—

@) Experiment

FI3: Wit LT XF AR ERALSHF 898 R

R MHFAN, ARG EGBIEZLFAN, 4o % MF42 (Hamilton path) Fo =4 H
It A (bipartite graph matching) , 42 f £ $H# K69 LT XF J XA RSB HEAE,

B EHE ARG 5] R IAF AT o

601 3 easy [Z hard 601 [ easy [ hard 60 -
46.0 45.0 48.3 47.0 =®— easy ={= hard

40 40 =0 40+
] g v
2 & 7.6 7.1 &

0.0 ]

1 | 17.1 204 &~
0 A / / 0 A Z / 0 T T T T T T
zero-shot few-shot  0-CoT CoT CoT+5C zero-shot few-shot  0-CoT CoT CoT+SC 0 2 4 8 12 16
Hamilton path bipartite graph matching # exemplar
27
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ASLCH

@ Method

Build-a-Graph Prompting: 455 A A LR E LT 2] LR MESE R TRESA H . BT —

a EEMEAME-ANFA T ARG ET

Algorithmic Prompting: 27 LLM™ YA4& ] — 2 BAR G Bk ik B8, thdw 45 9FLLMs4% I DFS 4

BFS k& g i iX AN 5] R
~{ standard Prompting }—————

~_Build-a-Graph Prompting |—————

—{ Aigorithmic Prompting | \

—~,
===
o

<in-context exemplar>

In an undirected graph, the nodes are
numbered from 0 to 4, and the edges are:
an edge between node 0 and node 4 with
weight 4,

an edge between node 0 and node 3 with
weight 3,

an edge between node 0 and node 1 with
weight 3,

Q Give the shortest path from node 0 to
node 2.

<in-context exemplar>

In an undirected graph, the nodes are
numbered from O to 4, and the edges are:
an edge between node 0 and node 4 with

weight 4, ++

We can use a Depth-First Search (DFS) algorithm to
find the shortest path between two given nodes in an

undirected graph

: :

DFS to explore all of its adjacent nodes. At each node

vou can keep track of the distance it takes to reach

- .
edages first

. J

A

Q: Give the shortest path from node 0 to
node 2.

A: All the paths from node 0 to node 2 are:

0,3,2 with a total weightof 3 + 1 =4,
0,1,4,2 with a total weight of 3 + 4+ 2 =9,
0,4,3,2 with a total weight of 4 + 1 + 1 = 6.
The weight of path 0,3,2 is the smallest, so
the shortest path from node 0 to node 2 is
0,3,2 with a total weight of 4.

hat n from th ing

can backtrack and pick the node which has the

hor [stan h th ination n
<in-context exemplar>
In an undirected graph, the nodes are numbered from
0 to 4, and the edges are:
an edge between node 0 and node 4 with weight 4, ...
Q: Give the shortest path from node 0 to node 2.
A: All the paths from node 0 to node 2 are:
0,3,2 with a total weightof3 + 1 =4,
0,14,2 with a total weight of 3 + 4+ 2 =9,
0,4.3,2 with a total weight of 4 + 1 + 1 = 6.
The weight of path 0,3,2 is the smallest, so the
shortest path from node 0 to node 2 is 0,3,2 with a

total weight of 4.
\.

Can Language Models Solve Graph Problems in Natural Language?, NIPS’23,
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ASCI

@ Method

Build-a-Graph Prompting: 154 A A E G L ARG L 2] LB AT R TRRASA B . BT —
4 IERMEAME-ANTA T EALGE

Algorithmic Prompting: #2~LLM T 2A4& f — &k BLAR A9 3 i e B A, thde 4 9FLLMs4% FIDFS S%
BF'S Sk f## i 13X A~ 5] AL,

Method Cycle Shortest Path Hamilton Path
Easy Medium Hard Avg. Easy Hard Easy(PC) Hard(PC) Avg. Easy Hard Avg.
CoT 84.67 63.33 53.25 66.75 63.89 29.50 76.84 35.79 51.51 40.00 8.00 24.00
CoT+BAG 86.00 69.33 62.00 72.44 67.78 33.50 79.20 42.56 55.76 38.67 6.00 2234
COT+ALGORITHM  77.33 74.00 64.00 71.78 63.89 28.00 76.06 38.70 51.66 36.67 7.50 22.09

AR 204 L, Cyclef=Shortest Path.zZAvg. 5732 5 7 5.69%424.25%;
T RAR ISR 5 B8 e 09 B A 22 4L 55475 2 — AN AFAT 5069 19 AL

29
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TALK LIKE A GRAPH: ENCODING GRAPHS FOR
LARGE LANGUAGE MODELS

@ Outline

Bahare Fatemi, Jonathan Halcmw,lBryan Perozzil
Google Research
{baharef, halcrow, bperozzi}@google.com

> Motivation: 434 AR ITLLMsfE & 2 XA H K38, 1 LLMstg BH LR A TRE. EH A
PLIME B EZIEH Edga E=ANEAREG LA ARR: 1) BRAG %, 2) BEFRR
MM 3) BEL&H.

@ camc] @

Graph encoder Prompt
function: g G describes a graph among nodes 0,1, 2, 3,4, 5,6, 7, and 8.
In this graph:

= MNode 0 is connected to nodes 2 and 3. — LLM: f — Answer: A
@ Mode 1 is connected to nodes 2 and 8.
| Prompt
Graph task question: Q Question: What is the degree of node 47

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,
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ASC

@ BenchMark

> Y- T — %7 69benchmark(GraphQA), — 7 7 &

il R g
Edge existence THIE 25 7€ NI R B AAAE T B

Node degree A EIF g AR, B 527 ORI A
Node count THEE R RS
Edge count THE K RILR e E .

Connected nodes o B 525 8 1 A EEAIER A T A
Cycle check e B2 GE SN, ERAEHE R,

Disconnected nodes HH B 5258 15 R MIERI A 1

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,



%0 2.2. TALK LIKE A GRAPH: ENCODING GRAPHS FOR LARGE LANGUAGE MODELS

ASC

&3 Method

©)
> BHARK: BRTAMARETF. aARATHENRE, LART EIMGAGEH,

5 57
ESTET S

BALE] ATy 89 KD Fn 25 Bl 31
K FHAEY RATAELF

YL T &

B BSE RS T
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ASCI

@ Method

> VLT S mAF e X, BRT A B % F Ko

been given a graph G among A,

Adjacency: In an undirected graph, (i,j) means that node i
and node j are connected with an undirected edge. G

- = =
describes a graph among nodes 0, 1,2, 3,4, 5,6, 7, and 8. A->BA->C, ... H=>1

Expert: You are a graph analyst and you have

B,C,D,E, F G,

H, and I. G has the following undirected edges:

The edges in G are: (0, 1) (0, 2) ... (6, 7) (7, 8).

Incident: G describes a graph among nodes 0, 1, 2, 3, 4, 5,
6, 7, and 8. In this graph: Node 0 is connected to nodes 1, 2.
Node 1 is connected to nodes 0, 2. Node 2 is connected to
nodes 0, 1, 3,4, 5, 7. ... Node 8 is connected to nodes 3, 7.

Graph G

Friendship: G describes a friendship graph among James,
Robert, John, Michael, David, Mary, Patricia, Jennifer, and
Linda. We have the following edges in G: James and
Robert are friends. ... Jennifer and Linda are friends.

(" Politician: G describes a social network graph among A
Barack, Jimmy, Arnold, Bernie, Bill, Kamala, Hillary,
Elizabeth, and John. We have the following edges in G:
Barack and Jimmy are connected. ... Elizabeth and John

\_are connected. J

(" Social network: G describes a social network graph\"
among James, Robert, John, Michael, David, Mary,
Patricia, Jennifer, and Linda. We have the following edges
in G: James and Robert are connected. ... Jennifer and

\_Linda are connected. )

-

GOT: G describes a friendship graph among Ned, Cat, )
Daenerys, Jon, Bran, Sansa, Arya, Cersei, and Jaime.

In this friendship graph: Ned and Cat are friends, Ned and
Daenerys are friends, Cat and Daenerys are friends, ...,

/

AN

Cersei and Jaime are friends. Y,

(S

Co-authorship: G describes a co-authorship graph among
James, Raobert, John, Michael, David, Mary, Patricia,
Jennifer, and Linda. In this co-authorship graph: James and
Robert wrote a paper together. ... Jennifer and Linda wrote
a paper together..

SP: G describes a friendship graph among Eric, Kenny, Kyle,
Stan, Tolkien, Heidi, Bebe, Liane, and Sharon. In this friendship
graph: Eric and Kenny are friends, Eric and Kyle are friends ...,

Heidi and Bebe are frie
Sharon are friends.

nds, Bebe and Liane are friends, Liane and

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,
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ASCI

@ Experiment

LI AR T RV 469 LLM A& BA4E 5% EégEst . Edge existence. Node degree.

Node count. Edge count. Connected nodesF=Cycle check.

Method | Encoding |Edge Existence Node degree Node count Edge count Connected nodes Cycle check Adjacency 42.8 71.2 57.0 25.2 22.4 56.6
Overall (/) 44.5/94 14.0/16.0 21.73/86 124/438 14.7/11.0 76.0/13.2 Incident 41.6 75.0 57.6 214 30.2 62.6
Adjacency 45.8 12.4 18.8 14.0 19.8 71.6 = Co-authorship 432 16.4 15.2 8.8 8.4 54.8
[5 Incident 39.6 25.0 15.6 10.6 53.8 68.8 8 Friendship 46.6 14.6 23.0 7.8 9.6 61.8
T Co-authorship 44.0 13.8 22.0 11.4 7.6 70.8 Sp 42.6 17.4 17.0 10.6 8.2 59.4
& Friendship 46.6 112 23.0 10.2 4.0 82.0 GOT 44.0 17.8 16.2 11.8 7.2 60.4
& Sp 46.4 9.0 22.4 15.0 6.2 80.4 Social network 42.6 16.4 21.6 8.4 8.0 60.6
N GOT 49.0 13.6 22.8 13.2 7.6 79.0 Politician 422 16.6 22.6 9.2 94 59.4
Social network 432 16.0 22.8 10.8 8.2 81.2 Expert 39.6 17.4 18.0 124 14.4 46.2
Politician 44.6 152 242 11.6 8.8 81.0 Overall (y1/6) 37.3/16.6 28.0/61.8 269/338 125/17.8 15.8/31.8 52.1/26.0
Expert 41.2 10.0 24.0 14.8 16.4 69.6 Adjacency 45.8 66.8 48.6 25.0 20.6 56.8
Overall (/8) 33.5/11.6 10.4/224 14.6/9.4 94/4.8 8.8/9.2 32.3/23.2 o Incident 45.6 75.2 51.2 21.8 41.0 63.0
Adjacency 34.2 154 11.0 12.2 6.0 46.2 < Co-authorship 25.0 14.6 17.4 72 92 37.0
la Incident 414 26.6 10.0 12.2 352 390.0 E Friendship 39.0 16.2 21.8 7.4 98 52.0
O Co-authorship 290.8 9.8 15.6 8.2 3.0 28.2 o SP 33.6 17.0 21.6 11.4 11.4 522
o Friendship 28.4 7.0 194 7.4 3.0 31.2 © GOT 32.6 15.6 18.0 11.0 10.0 54.6
& SP 326 9.2 15.6 8.4 5.0 34.8 Social network 44.8 13.4 19.6 9.0 10.0 51.2
N GOt 346 8.4 16.2 8.4 54 334 Politician 40.4 17.6 22.8 8.2 10.2 57.2
Social network 30.8 6.6 14.0 9.2 3.8 26.0 Expert 292 15.8 20.8 11.6 20.4 45.0
Politician 38.0 42 14.6 8.6 32 23.0
Expert 31.6 6.0 14.8 10.0 142 28.8
Overall (1/6) 36.8/13.8 174/234 253/356 12.0/9.0 124/152 37.4/24.0
Adjacency 42.8 15.4 47.2 18.6 222 47.8
& Incident 38.8 33.6 51.2 14.6 36.6 45.0
T Co-authorship 294 15.6 15.6 10.2 9.0 46.8
3 Friendship 40.6 122 184 9.8 6.4 414
E SP 34.6 18.0 18.0 12.0 6.8 38.2
- GOT 40.6 17.2 14.2 12.0 34 28.6
Social network 374 15.0 21.2 10.2 7.8 34.2
Politician 38.0 134 214 9.6 7.8 30.8 P L M 6 2 B d P L M 2
Expert 29.0 16.6 204 11.2 11.8 23.8 a a n a
Overall (11/6) 42.8/17.0 29.2/604 27.6/424 12.8/174 13.1/18.0 58.0/16.4

34
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ASLCH

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,

@ Experiment

gR1: 1) LLMAA R BES L EERRILTE; 2)

3) E %A & FATLLMEE A T 2% ;

Method | Encoding |Edge Existence Node degree Node count Edge count Connected nodes Cycle check

Overall (/) 44.5/94 14.0/16.0 21.73/86 124/48 14.7/11.0 76.0/13.2
Adjacency 45.8 12.4 18.8 14.0 19.8 71.6
[5 Incident 39.6 25.0 15.6 10.6 53.8 68.8
T Co-authorship 44.0 13.8 220 11.4 7.6 70.8
S Friendship 46.6 11.2 23.0 10.2 4.0 82.0
& SP 46.4 9.0 224 15.0 6.2 80.4
N GOT 49.0 13.6 22.8 13.2 7.6 79.0
Social network 43.2 16.0 22.8 10.8 8.2 81.2
Politician 44.6 15.2 242 11.6 8.8 81.0
Expert 41.2 10.0 24.0 14.8 16.4 69.6

Overall (/8) 335/11.6 104/224 14.6/94 9.4/48 8.8/9.2 32.3/232
= Adjacency 342 15.4 11.0 12.2 6.0 46.2
= Incident 41.4 26.6 10.0 12.2 352 39.0
8 Co-authorship 29.8 9.8 15.6 8.2 3.0 28.2
o Friendship 28.4 7.0 194 74 3.0 31.2
& SP 32.6 9.2 15.6 8.4 5.0 34.8
N GOT 34.6 8.4 16.2 8.4 54 334
sl | Social network 30.8 6.6 14.0 9.2 3.8 26.0
Politician 38.0 42 14.6 8.6 3.2 23.0
Expert 31.6 6.0 14.8 10.0 142 28.8

Overall (1/6) 36.8/13.8 1747234 253/356 12.0/9.0 124/152 37.4/24.0
Adjacency 42.8 15.4 47.2 18.6 222 47.8
5 Incident 38.8 33.6 51.2 14.6 36.6 45.0
T Co-authorship 294 15.6 15.6 10.2 9.0 46.8
3 Friendship 40.6 12.2 18.4 9.8 6.4 41.4
E Sp 34.6 18.0 18.0 12.0 6.8 38.2
- GOT 40.6 17.2 14.2 12.0 3.4 28.6
Social network 374 15.0 21.2 10.2 7.8 342
Politician 38.0 134 214 9.6 7.8 30.8
Expert 29.0 16.6 204 11.2 11.8 23.8

Overall (11/6) 42.8/17.0 292/604 27.6/424 12.8/174 13.1/18.0 58.0/16.4

fey S 89 F

COT

COT-BAG

Adjacency
Incident
Co-authorship
Friendship
Sp
GOT
Social network
Politician
Expert
Overall (11/6)
Adjacency
Incident
Co-authorship
Friendship
SP
GOT
Social network
Politician
Expert

428
41.6
432
46.6
42.6
44.0
42.6
422
39.6

37.3/16.6

45.8
45.6
25.0
39.0
33.6
32.6
44.8
404
29.2

& e F T

71.2
75.0
16.4
14.6
17.4
17.8
16.4
16.6
17.4

28.0/61.8

66.8
75.2
14.6
16.2
17.0
15.6
13.4
17.6
15.8

T ) 94 5

57.0
57.6
15.2
23.0
17.0
16.2
21.6
22.6
18.0

26.9/33.8

48.6
51.2
174
21.8
21.6
18.0
19.6
228
20.8

)

25.2
214
8.8
7.8
10.6
11.8
8.4
9.2
12.4

125/17.8

25.0
21.8
7.2
74
11.4
11.0
9.0
8.2
11.6

9.4
14.4

15.8/31.8

20.6
41.0
9.2
9.8
11.4
10.0
10.0
10.2
204

35

56.6
62.6
54.8
61.8
59.4
60.4
60.6
59.4
46.2
52.1/26.0
56.8
63.0
37.0
52.0
522
54.6
51.2
572
45.0
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ASLCH

@ Experiment

X1 1) LIMARKGEAES EEERRIATE; 2) AEORTRESA TR LOES;
3) B 4% BT LLMER A %%,

Method | Encoding |Edge Existence Node degree Node count Edge count Connected nodes Cycle check Adjacency 42.8 71.2 57.0 25.2 22.4 56.6
Overall (1u/3) | 445794 [40/160 21.73/86 124/438 1477110 7607132 lncident 416 75.0 576 . 2l4 302 626
Adjacency 45.8 12.4 18.8 14.0 19.8 71.6 » Co-authorship 432 16.4 15.2 8.8 8.4 54.8
5 Incident 30.6 23.0 15.6 10.6 53.8 68.8 8 Friendship 46.6 14.6 23.0 7.8 9.6 61.8
a Co-authorship 44.0 13.8 22.0 11.4 7.6 70.8 SP 42.6 17.4 17.0 10.6 8.2 59.4
& Friendship 46.6 11.2 23.0 10.2 4.0 82.0 GOT 44.0 17.8 16.2 11.8 7.2 60.4
& SP 46.4 9.0 224 15.0 6.2 80.4 Social network 42.6 16.4 21.6 8.4 8.0 60.6
N GOT 49.0 13.6 22.8 13.2 7.6 79.0 Politician 422 16.6 22.6 9.2 9.4 59.4
Social network 432 16.0 228 10.8 8.2 81.2 Expert 39.6 17.4 18.0 124 14.4 46.2
Politician 44.6 15.2 242 11.6 8.8 81.0 Overall (11/6) 37.3/16.6 28.0/61.8 269/33.8 125/17.8 15.8/31.8 52.1/26.0
Expert 41.2 10.0 24.0 14.8 16.4 69.6 Adjacency 45.8 66.8 48.6 25.0 20.6 56.8
Overall (u/6) | 33.5/11.6 104/224 146/94  9.4/438 8.8/9.2 By pow o Incident 45.6 75.2 51.2 21.8 41.0 63.0
Adjacency 34.2 154 11.0 12.2 6.0 46.2 < &o-authors| orship 25.0 14. 17. 7. . 7.
& ident Ll 200 L0.0 Lo kAt 2.0 - Friendship 39.0 16.2 2138 74 9.8 52.0
O Co-authorship 290.8 9.8 15.6 8.2 3.0 28.2 o SP 33.6 17.0 21.6 11.4 114 522
S Friendship 284 7.0 19.4 7.4 3.0 31.2 “ GOT 32.6 15.6 18.0 11.0 10.0 54.6
& SP 326 9.2 15.6 8.4 5.0 34.8 Social network 44.8 13.4 19.6 9.0 10.0 51.2
N GOT 34.6 8.4 16.2 8.4 5.4 33.4 Politician 404 17.6 28 8.2 10.2 57.2
Social network 30.8 6.6 14.0 9.2 3.8 26.0 Expert 292 15.8 20.8 11.6 20.4 45.0
Politician 38.0 42 14.6 8.6 32 23.0
Expert 31.6 6.0 14.8 10.0 14.2 28.8
Overall (u1/8) 36.8/13.8 17.4/234 253/356 12.0/9.0 124/15.2 37.4/24.0
Adjacency 42.8 15.4 472 18.6 222 47.8
[5 jident 38 8 33 6 512 146 366 45 0
T Co-authorship 204 15.6 15.6 10.2 9.0 46.8
3 Friendship 40.6 12.2 18.4 9.8 6.4 414
E SP 34.6 18.0 18.0 12.0 6.8 38.2
= GOT 40.6 17.2 14.2 12.0 34 28.6
Social network 37.4 15.0 21.2 10.2 7.8 34.2
Politician 38.0 13.4 214 9.6 7.8 30.8
Expert 29.0 16.6 204 11.2 11.8 238
Overall (/8) 428/17.0 29.2/604 27.6/424 12.8/174 13.1/18.0 58.0/16.4
36
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@ Experiment

o)

F82: AF44¢ A Friendshiptk 4 B 4 A5 % 2, FH48 8 B FF R ) 69 9 B 4 A5 38 & Bt 47 2 3
B 1) A 4 7D 35 Fe L ) 1) R G F 25 o T Xt
BB AE: A%M5EMEENIES, flde: “FERIGELSI? . ARE
= ‘U
BRARRBHE: EH—ANRLERS, BFG TP RERRAM. ALAELERY “F P
1& AR B A B A “THEMAKEE ...
Method Question encoder LLM Edge Existence Node degree Node count Edge count Connected nodes
Graph PalLM 2-XXS 42.8 10.8 54 5.6 1.6
Application PalLM 2-XXS 60.8 14.0 9.4 4.4 114
ZERO-SHOT _%raph PalM 628 6.6 12 33.0 0.2 30
lication PalLM 62B 47.8 16.6 17.8 13.2 6.0
Graph PalLM2 XXS 50.4 8.8 8.4 4.2 10.2
COT Application Pal. M2 XXS 56.4 12.2 8.6 5.4 11.0
Graph PalLM 62B 46.6 14.6 23.0 7.8 9.6
Application Pal.M 62B 38 6 16.6 16.0 12.2 10,0

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,
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@ Experiment

L3 YE£ 74+ TLLMs A 4 #2Disconnected nodes/: 5+ 49 % 3.
2 2. LLMs/E 4 32 W 73 SAE S0 A I 42, ZERO-SHOT #3277 7 i& 69 2 #8 AL A4 0.5%,
mZERO-COT. FEW-SHOT. COT#COT-BAG 7 % &9 A4 & JL-F #40.0% .

DHRE: XTREZEABRL IR EZRHA T EET ENIZE, WA BHEBE K E
B a2 8, FERLLMsA A EE T &% R A IRILT, 2 A M EESE LN EAILKR
%, M it 5Disconnected nodes /x4 & I R %

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,
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®
T84 EEERAT 5B AERL X RO EEIE, B EEHATLLM A 325 69 % v o

X AEMATLLMA B RS T R ILA BF Ao

Method | Graph generator Edge Existence Node degree Node count Edge count Connected nodes Cycle check
Overall 49.1 17.6 23.0 12.1 233 75.2
& ER 45.1 13.6 22.1 11.7 14.9 76.3
= BA 50.2 18.0 24.9 13.6 20.1 72.0
& SBM 45.0 13.8 21.9 0.2 13.8 86.5
P Star 58.0 34.0 32.8 31.7 61.7 8.1
N SEN 57.6 23.1 19.9 8.0 38.1 90.0
Path 60.9 14.8 31.9 28.8 26.6 5.9
Complete 19.8 12.6 20.7 6.2 13.3 91.7
Overall 40.4 29.6 31.7 12.2 24.3 59.5
ER 41.2 28.4 28.8 12.6 12.8 61.2
. BA 40.0 30.0 35.0 14.3 20.8 58.5
S SBM 40.3 26.5 30.2 8.7 13.0 65.8
Star 40.3 38.0 41.8 31.6 68.6 21.3
SEN 40.2 322 30.8 7.1 432 66.0
Path 42.0 35.1 35.3 31.1 27.6 19.7
Complete 39.6 21.9 28.9 39 14.6 69.3

TALK LIKE A GRAPH:ENCODING GRAPHS FOR LARGE LANGUAGE MODELS, ICLR’24,
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Let Your Graph Do the Talking: Encoding Structured
Data for LLMs

@ Outline

IBryan Peruzzil‘ Bahare Fatemi' Dustin Zelle' Anton Tsitsulin '
Mehran Kazemi' Rami Al-Rfou? Jonathan Halcrow '

LA LLMs 4 ik B 20 HIE 0 7 X, [ ww [ um
1) 4210 3B 4 3 i A FLLM #9330 4,
2) A& R AP 2 W Y H e A R IE A R G E R T Qﬁ' ‘Qﬁ‘

> Problem: £l TAEZE T HG — A HEMZEARZHRNGLLEL R

Let Your Graph Do the Talking: Encoding Structured Data for LLMs, arxiv’24,
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@ Method

> VEE A & %48 (Parameter Efficient Fine-Tuning) 69 %48, Jo & 44 3038 % 7 1%,
BNF T o I KX B NAE Ay ik 42 B VT 7 A 6y Prompt, [ LLMAE %% % 55 3 32 #% Fe 2
A ek = A

GraphToken Encoder

Graph
Graph Convolution Graph Convolution
(=]
E @
o
3 = %
= 2 ©
L —| | g =
p ) %
= 1 5
1)
e Frozen LLM
s £ 2 I
Question s 8 % utput
Is th le in thi h? 1 Is there || a || cycle in this raph 2 + 5 o Yes, there is a
s there a cycle in this graph? y grap ! £ @ 5 o e el
® o 2
g 3 -
w 2 c

Let Your Graph Do the Talking: Encoding Structured Data for LLMs, arxiv’24, Google Research & Waymo Research



D 2.2. Let Your Graph Do the Talking: Encoding Structured Data for LLMs

ASCI

—

@ Method

1) GraphToken Encoder: o8 4#4/E A#N, B BALE %A 2 U F S 44, & FHGNNA
ARB & . ATFTHESLARRE (Graph, Edge\ Node) , %7535 K A R F) #9ReadoutiZ B % 7~
2) LLM: fEATARE 45 S B HNF 5069 KA BT HA, 4EH 14 PaLM 2 X S 4R ;

3) WHIE: WA=l (6T, 4) , # AT EERQ=E0G)|T(MLER, Kedidi
LA Q)# %, ##GraphTokenty £, MLLMAKEHFRE.

GraphToken Encoder

Graph ]
Graph Convolution Graph Convolution —
(=)]
£ —e
= .
g 5 2
c 2 I > 0
[T > 2 =
] 3 a
5 : —&
©
g L Frozen LLM
g £ 2 1
" o
Question 3 3 — % Output
Is there a cycle in this graph? H Is || there ”EH cycle H in H this H graph ‘ g+ E : z Yes, there is a
y orapn : T 2 2 cycle in this graph.
o O 8
=} % 7 03"
& & o
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E 1 i@t A bR T GraphToken 5 B 3 34 % 6932 7 LA o 23R T 7 ik

¢ & : GraphToken ZFfA B P EABIELEH B ERLTIHA 7%k, FXK SOFT-
PROMPT /£ 3L A2 45 L BT T % 2589 sy, 12X T 22/ A EMme TR XS 8475,
5 BT M 25 R AL o

| Graph Tasks Node Tasks Edge Tasks
Method | Node count Edge count Cycle check Triangle counting | Node degree Connected nodes | Reachability Edge existence Shortest path
ZERO-SHOT 0.217 0.124 0.760 0.015 0.140 0.147 0.849 0.445 0.115
ZERO-COT 0.146 0.094 0.323 0.127 0.104 0.088 0.735 0.335 0.336
FEW-SHOT 0.253 0.120 0.374 0.030 0.174 0.124 0.794 0.368 0.227
COT 0.276 0.128 0.580 0.081 0.292 0.131 0.452 0.428 0.386
COT-BAG 0.269 0.125 0.521 0.081 0.280 0.158 0.452 0.373 0.404
SOFT-PROMPT 0.056 0.018 0.832 0.162 0.098 0.068 0.838 0.544 0.462
GraphToken |  0.996 0.426 0.956 0.348 | 0.962 0.264 | 0.932 0.738 0.638
Flan
PaLM 2

Let Your Graph Do the Talking: Encoding Structured Data for LLMs, arxiv’24,
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K2 EEMRTRABFERRGBHABMymEs EAE A EAT R, GEAA
REG LT LT ) A AFAE A AR SR
SR TR E M EER T AR 6 E AR S5

| Graph Tasks Node Tasks Edge Tasks
Method | Node count Edge count Cycle check Triangle counting | Node degree Connected nodes | Reachability Edge existence Shortest path
~ GCN 0.746 0.056 0.964 0.208 0.264 0.264 0918 0.68 0.604
§ GIN 0.704 0.052 0.898 0.194 0.252 0.18 0.902 0.65 0.586
< MPNN 0.792 0.368 0.956 0.348 0.962 0.25 0.934 0.648 0.638
= HGT 0.252 0.084 0.934 0.234 0.266 0.184 0.944 0.718 0.6
MHA 0912 0.264 0.962 0.266 0.552 0.244 0.932 0.738 0.608
g Node Set 0.996 0.080 0.948 0.198 0.19 0.118 0.942 0.596 0.568
5 Edge Set 0.618 0.426 0.964 0.228 0.22 0.096 0.904 0.592 0.568

Let Your Graph Do the Talking: Encoding Structured Data for LLMs, arxiv’24,
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Dr. Jian Tang

for Learning

9 Montreal, Canada

| am currently an associate professor at Mila-Quebec Al Institute and HEC Montreal. Prior to that,
| was a Postdoc at University of Michigan and Carnegie Mellon University. | also worked at
Microsoft Research Asia as an associate researcher between 2014-2016. For more information,
please check my CV.

Hiring!! Our group has multiple PhD positions next Fall. In particular, we are looking for students

Mila E

e Geometric Deep Learning, Graph Neural Networks for Drug Design

to work on the following projects:

¢ Equivariant Neural Networks for Molecular Simulation

¢ Knowledge Graph Construction and Reasoning, Natural Language Understanding

Students who are interested in working with me please apply through Mila admission (students
working with me will be affiliated with UdeM) or send me an email directly.

Quanming Yao aiusn %iﬁﬂhﬂ%

Assistant Professor & Ph.D Advisor

Department of Electronic Engineeting,_Tsinghua University

Huawei endowed professorship and Bingkun Zhou (E}RIE) Scholar

E-mail: qyacaa [AT] connect.ust.hk / tsinghua.edu.cn

Office: 11-305 Room, Rohm Building, Tsinghua. Beijing, China, 100084 (MAP)
Github, Google Scholar, Zhihu

Professor Huang, Chao

PhD Notre Dame
Assistant Professor
Institute of Data Science Scholar

Fax: (+852) 2559 8447
Email: chuang [AT] ¢s [DOT] hku [DOT] hk
Homepage: https://sites. google.com/view/chaoh

Chao Huang is an Assistant Professor at the Department of Computer Science at

the University of Hong Kong (HKU). His research focuses on developing novel
machine learning frameworks to tackle various challenges in Data Mining,
Information Retrieval, Spatial-Temporal Data Analytics, User Behavior Modeling
Recommendation, Graph Mining, and Deep Representation Learning. Prior to
that, | received my Ph.D. in Computer Science from the University of Notre
Dame in USA.

BREA
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Jiliang Tang

Jiliang Tang is a University Foundation Professor in the computer science and engineering department at Michigan State University. He got
one early promotion to associate professor at 2021 and then a promotion to full professor (designated as MSU foundation professor) at
2022. Before that, he was a research scientist in Yahoo Research and got his PhD from Arizona State University in 2015 under Dr. Huan Liu.
His research interests include graph machine learning,trustworthy AI and their applications in education and biology. He was the recipient
of various awards including 2022 AI's 10 to Watch, 2022 IAPR J. K. AGGARWAL Award, 2022 SIAM/IBM Early Career Research Award,
2021 IEEE ICDM Tao Li Award, 2021 IEEE Big Data Security Junior Research Award, 2020 ACM SIGKDD Rising Star Award, 2020
Distinguished Withrow Research Award, 2019 NSF Career Award, and 8 best paper awards (or runner-ups). His dissertation won the 2015
KDD Best Dissertation runner up and Dean's Dissertation Award. He serves as conference organizers (e.g., KDD, SIGIR, WSDM and SDM)
and journal editors (e.g., TKDD, TOIS and TKDE). He has published his research in highly ranked journals and top conference proceedings,

WiraNs which have received tens of thousands of citations with h-index 95 (Google Scholar) and extensive media coverage (Links).

W(L“__ ‘
/
n - " Email: tangjili at msu dot edu

Office: Engineering Building 2148

Mail: 428 S Shaw Ln Rm 3115, East Lansing, MI 48824

Lab: Data Science and Engineering Lab (Webpage, and Twitter )

‘Wenwu Zhu

Professor

Phone: +86-10-62790967

VNG -
H R Homepageo enA| :__ = ’e”
i) About me P 'fa'_—ﬁf{-, el Bryan Perozzi

I'm a research scientist at OpenAl exploring ChatGPT.

Ireceived my Ph.D. in Computer Science from Stanford University and a B.S.

with honors in Computer Science from Peking University. News

* 1/2017 - "Ties That Bind: Characterizing Classes by Attributes and Social Ties"

Awards accepted at WWW'17 (Web Science Track)
« 05/2016 - Defended "Local Modeling of Attributed Graphs: Algorithms and
« Apple PhD Fellowship Applications"!
* Baidu PhD Fellowship « 05/2016 - "When Recommendation Goes Wrong: Anomalous Link Discovery in
» Masason Foundation Fellowship Recommendation Networks" accepted at KDD'16.
« 05/2016 - "Scalable anomaly ranking of attributed neighborhoods" awarded Best
Teaching Paper Runner-up at SDM'16!
« 05/2015 - "Freshman or Fresher? Quantifying the Geographic Variation of Internet
* Head TA, CS246 Mining Massive Datasets, Winter 2022 Language" accepted at ICWSM'16.
« TA, CS231n Deep Learning for Computer Vision, Spring 2022 « 01/2016 - "Scalable Anomaly Ranking of Attributed Neighborhoods" accepted at
* TA, CS224w Machine Learning on Graphs, Fall 2021 SDM'16.
Feel free to reach me at hongyu@openai.com (work) or About Me
hyren@cs.stanford.edu (personal). | am a Research Scientist, working at the intersection of data mining, machine learning,

Research scientist at OpenAl

graph theory, and network science. | am particularly interested in local graph algorithms

Research Interests

« Data mining « Distributed algorithms
« Graph Mining « Natural language processing
« Graph theory « Machine learning
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?(Q %*/?ﬁ%& | C &9& zé Assistant Professor N U S
: University of Chinese Academy of Sciences [P [English] C M T, Gl
= MSc in Computer Science and BSc in Ma} F aﬂ
BEER #HEws IFED  STrSkm  dHRES \ t y

2R BERER

Bryan HOOI is an assistant professor in the Computer Science Department, School

of Computing at the National University of Singapore. He has obtained his PhD
degree in Machine Learning from Carnegie Mellon University, USA in 2019, his

BESW COM3-02-22 ) ) ) .

Master of Science degree in Computer Science and Bachelor with Honours degree

in Mathematics from Stanford University, USA in 2014.

081201-i+BHARET 66012373

BEnm
ISR SR S, RS

D bhooi.github.io His research interests include machine learning, graph mining, anomaly detection,
spatiotemporal data, and biomedical applications of Al.
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TR yaodi@ictac.cn 2017-10--2018-10 FMFESFEIAS HIAFE
BfEiht: ALRTESER AR S 2013-09--2019-07 FERZFFTERATRN FRE/EL
HREZRRS: 100190 2009-09--2013-07 FALAE AR/ZEL
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N HEFE huajunsir at zju £ edu dot cn

- Fizam ATH. MRERE. BS0ESAME, Alfor Science

weLesioes JUFrE Leskovec

Professor of Computer Science, Stanford University ia >
7 os stanford edu (ERFA T - BT 2075

Data mining Machine Leaming Graph Neural Networks Knowledge Graphs  Complex Networks
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